
 Coding Standards and Guidelines for the
Gemini Data Processing Software

Kathleen Labrie, Craig Allen, and Emma Hogan

Science Users Support Department

V2.1 – 03 October 2018

Revision History
V1.0 – 27 March 2013 Kathleen Labrie
V1.1 – 13 June 2014 Kathleen Labrie
V1.2 – 28 February 2015 Kathleen Labrie
V2.0 – 25 January 2018 Kathleen Labrie
V2.1 – 03 October 2018 Kathleen Labrie

Document ID: DPSG-STD-102_CodingStandards

Document Purpose
This document defines the coding standards and guidelines to apply to the implementation of the
Gemini data processing software suite.

Intended Audience
This document is intended primarily to the developers of the Gemini data processing software,
whether they are on the Data Processing Software Group or not. This document is to be used by
anyone reviewing code against the standards.

Table of Contents

1. Policy ... 2
2. References .. 2
3. Definitions ... 2

3.1 Guidelines Priority Definitions .. 2
3.1.1 CRITICAL ... 2
3.1.2 INTERFACE ... 3
3.1.3 STANDARD ... 3
3.1.4 SUGGESTED .. 3
3.1.5 INFORMATIVE .. 3

4. Codebase Management Standards .. 3
5. Code Review Guidelines... 3
6. Glossary – GP-Py-Glos ... 3
7. Guidelines for the DRAGONS Codebase ... 5

7.1 Guiding Principles for the Python Codebase ... 5
7.2 Verification .. 5
7.3 Python Source Code Formatting – GP-Py-Format .. 5
7.4 Constants – GP-Py-Const .. 7
7.5 Naming – GP-Py-Name ... 8
7.6 Programming – GP-Py-Prog .. 12
7.7 Classes – GP-Py-Class .. 13

7.8 Documentation – GP-Py-Doc ... 14
7.9 Tests – GP-Py-Test .. 15
7.10 Astrodata – GP-Py-AD ... 16
7.11 Astrodata Tag – GP-Py-ADTag .. 17
7.12 DRAGONS Add-on – GP-Py-DRadd ... 17
7.13 Recipe Set – GP-Py-Recipe ... 18
7.14 Primitives – GP-Py-Prim .. 19
7.15 Descriptors – GP-Py-Descrip ... 20
7.16 External Modules – GP-Py-Ext .. 21
7.17 GUI – GP-Py-GUI ... 22

8. Guidelines for the gemini_IRAF Codebase .. 22
8.1 IRAF CL Source Code Formatting – GI-CL-Format ... 23
8.2 IRAF CL Constants – GI-CL-Const .. 23
8.3 IRAF CL Naming – GI-CL-Name .. 24
8.4 IRAF CL Programming – GI-CL-Prog .. 25
8.5 IRAF CL Documentation – GI-CL-Doc ... 26
8.6 IRAF CL Tests – GI-CL-Test .. 27
8.7 IRAF CL External Dependencies – GI-CL-Ext ... 28

9. Detailed Revision History .. 29

1. Policy
The guidelines stated in this document are to be adhered to when developing software for the
Gemini data processing software suite. Code will be reviewed against these guidelines. The
objectives are to ensure quality, robustness, maintainability, and re-usability.

2. References
DPSG-STD-101_ConfMgmtNomenclature.docx
PIPE-TEMP-101_Primitive.py
PIPE-USER-102_DatasetNameSuffixes.docx

3. Definitions

3.1 Guidelines Priority Definitions

Each guideline is given a priority level. The levels are:

1. CRITICAL
2. INTERFACE
3. STANDARD
4. SUGGESTED
5. INFORMATIVE

3.1.1 CRITICAL

CRITICAL guidelines are those that are crucial to the functioning of the software. If they are not
followed the software will not work. For example, if a recipe filename does not respect the format
"recipe.*", it will not be recognized as a recipe by the Recipe System.

3.1.2 INTERFACE

Guidelines marked as INTERFACE are generally those that are related to interfaces or
user/programmer experience. Those guidelines must be adhered to during development.

3.1.3 STANDARD

Guidelines marked STANDARD priority are required and often related to the perceived
cleanliness of the code. They express a general team consensus on best practices. Deviation
from those guidelines need to be justified and approved. (KL: what is the process for such
approval?)

3.1.4 SUGGESTED

SUGGESTED guidelines are for points that are left to the individual discretion of the developer
but upon which the team has agreed are often arguably best practices, though there may be
exceptions and application depends on the case.

3.1.5 INFORMATIVE

Guidelines labeled INFORMATIVE are suggestions to help convey some regular practices that
can be valuable but are not critical in any way, for examples practices that promote forward-
compatibility.

4. Codebase Management Standards
The Codebase Management standards are defined in the document DPSG-STD-
103_CodebaseMgmt. The document provides information about revision control for both the
Python codebase and the IRAF codebase. [KL. see http://gdpsg.wikis-
internal.gemini.edu/index.php/GDPSG-CodebaseManagement when it's time to write that
document.]

5. Code Review Guidelines
The Code Review process and guidelines are defined in the document DPSG-PROCESS-
101_CodeReview. The document provides information about the whole code review process,
from objectives of the reviews to their duration, for example. [KL. see http://gdpsg.wikis-
internal.gemini.edu/index.php/GDPSG-CodebaseManagement when it's time to write that
document.]

6. Glossary – GP-Py-Glos

GP-Py-Glos-1

[STANDARD]

DRAGONS

The name of the Python data reduction software suite. It contains
Astrodata (astrodata package) and the RecipeSystem (recipe_system
package), as well as the official Gemini add-ons, gemini_instruments and
geminidr, and finally the gempy package.

GP-Py-Glos-2

[STANDARD]

AstroData

The base class for all the data specific AstroData classes.

GP-Py-Glos-3

[STANDARD]

Astrodata Tag

A tag defined in an Astrodata add-on package. A set of tags describes the
type of data loaded in the AstroData object.

GP-Py-Glos-4

[STANDARD]

Descriptor

A metadata concept appropriate for any dataset.

GP-Py-Glos-5

[STANDARD]

Astrodata Add-on

A package containing the AstroData subclasses, the tags, and the
descriptors for one or more instruments. Eg. gemini_instruments,
octocam_instrument.

GP-Py-Glos-6

[STANDARD]

RecipeSystem Add-on

A package containing the recipes, primitives and data reduction algorithms
for one or more instruments. Eg. geminidr, octocamdr.

GP-Py-Glos-7

[STANDARD]

Primitive

A step that performs a "scientifically meaningful" transformation of the
dataset or a measurement. A primitive is a special function that can be
called in a Recipe.

GP-Py-Glos-8

[STANDARD]

Recipe

A list of sequential instructions formed of the names of primitives and other
recipes. A recipe is run by the Recipe System.

GP-Py-Glos-9

[STANDARD]

"scientifically meaningful"

This term describes the most fine-grained unit of transformation a primitive
should perform.

This term is of course difficult to define in detail. However, we use it as it
gives a direction to some of the statements of goals in the Gemini data
processing software. The objective is to avoid creating primitives that are
too fine-grained as we aimed to have recipes that can be read as a story
rather than as code.

GP-Py-Glos-10

[STANDARD]

Recipe System

The system that runs the recipes. It is part of the DRAGONS package and
requires add-on's do to any data processing. The Recipe System is the
automation layer of the pipeline.

7. Guidelines for the DRAGONS Codebase

ID

[Priority]

Name

Statement

Note

7.1 Guiding Principles for the Python Codebase

1) PEP8
The "Style Guide for Python Code" (PEP8) shall be adopted, unless otherwise
specified. (http://www.python.org/dev/peps/pep-0008/)

2) Clarity
Source code and comments effectively communicates information to readers only to
the extent that its contents are made comprehensible. Clarity is enhanced through
writing comments in complete sentences consisting of correctly spelled words.
Placing declarations and directives so that they are easy to find, using clean and
simple logic, and using meaningful names.

3) Visual Coherence
Software placing related information in close visual proximity, and visually separating
unrelated information, is more readable than code which does not.

4) Consistency
Requires that all software within a project conform to a single set of syntactic and
stylistic conventions.

5) Integrity
The most obvious form of integrity is physical integrity. Source files must be editable,
viewable, and printable, using standard utilities available on a variety of platforms.

6) Modularity
Maintenance of software is easier when the software is composed of pieces which
may be rearranged and/or modified independently of each other.

7) Efficiency
At Gemini we are data bound, therefore it is important to keep code as efficient as
possible without compromising portability.

7.2 Verification

The developer should run pylint on the code during development and certainly before submitting
the code for review. A pylintrc for the DRAGONS software is available in
DRAGONS/gempy/support_files. To use, just copy pylintrc to $HOME/.pylintrc.

7.3 Python Source Code Formatting – GP-Py-Format

GP-Py-Format-1

[STANDARD]

Line Length Rule

Line length shall be kept to 79 characters or less.

GP-Py-Format-2

Line Wrapping

Long lines shall be wrapped using Python's implied line continuation inside

[SUGGESTION] parentheses, brackets, and braces, and using a backslash elsewhere.

Since newline and indentation is important in Python source code, it can
be difficult to break lines up appropriately. It is preferred that it not be done
with line continuation characters ("\"). Instead, new lines inside
parentheses and reliance on the python string concatenation features
should be relied upon if possible.

GP-Py-Format-3

[STANDARD]

Indentation Rule

Indentation shall consist of four (4) spaces. Tabs are NOT allowed.

It is therefore required that code only be edited with an editor that respects
the uses of spaces (ie. does not convert whitespaces to tabs). Examples
of editors known to be configurable: emacs, vi, PyCharm, and the eclipse
IDE.

GP-Py-Format-4

[SUGGESTION]

White Spaces

1) Inside parentheses, elements should be separated with one blank.
 spam(ham[1], {egg:2}, 'this string')

2) In statements, put one blank after comma "," and semicolon ";".
 print(x, y); x, y = y, x

3) In statements, equal signs "=" are flanked on both sides by a blank.
 if x == 4:

4) In function argument lists, do not flank equal signs "=" with blanks.
 def boo(arg1=defa, arg2=0.0):

5) In lists, do not use blanks when indexing or slicing.
 dict['key'] = list[index]

GP-Py-Format-5

[SUGGESTION]

Import Statement

Imports should be on separate lines and should avoid using “*”.

Instead of "import os, sys":
import os
import sys

However, this is allowed:
 from numpy import shape, where, size
Not allowed (see exception in GP-Py-Const-4):
 from numpy import *

GP-Py-Format-6

[STANDARD]

Import Sorting Rule

Imports shall appear at the top of modules and be ordered as described in
the notes below. Exception for modules being "lazy loaded" for a specific
reason (to be documented in place with comments).

Imports shall appear in the following order:
1. Major Python Packages, such as sys, and os
2. Standard Python Packages
3. Third Party Dependency Packages
4. DRAGONS Package imports
5. Utility Imports

"Lazy loading" refers to putting an import statement inside code where the
package is needed so rather than being loaded when the calling module is
itself imported, it will be imported only when it is going to be needed.

7.4 Constants – GP-Py-Const

GP-Py-Const-1

[STANDARD]

Constant Name

Name constants in ALLCAPS.

Python does not support the idea of actual constants. Instead, global
scope variables are used, thus the need for clear identification of variables
intended to be constants.

GP-Py-Const-2

[STANDARD]

Respect for constants

Do not change the value of a constant.

Python does not support the idea of actual constants, and will let such
variable be modified. Therefore, is important to never, under any
circumstances, change a value of a variable we identify as a constant. If
the value really needs changing, then it is not constant.

GP-Py-Const-3

[STANDARD]

No hardcode

Do not hardcode code statements.

Instead of hardcoding, use constants properly, or use clearly assigned
variables.

GP-Py-Const-4

[STANDARD]

Groups of related constants

A group of related constants shall be stored together in their own module
and imported.

"from xyz import *" is valid in this case.

GP-Py-Const-5

[STANDARD]

Look-up tables for constant in configuration space

Any constant associated with an with an AstroData tag or descriptor and
used in more than once should be stored in a Python look-up table, in
octocam_instrument/octocam/lookup.py. The look-up table should be a
Python file, for example storing a Python dictionary or list.
Similarly, the look-up tables used in the primitives should be Python files,
dictionary or list, and stored in octocamdr/octocam/lookups/, the name of
the file representing the content.

See DRAGONS’ gemini_instruments/gmos/lookup.py and
geminidr/gmos/lookups/ for examples.

GP-Py-Const-6

[STANDARD]

Constant definition location

Constants appear at the top of modules, class, or function definitions.

7.5 Naming – GP-Py-Name

GP-Py-Name-1

[STANDARD]

Variable names internal to a function, a module, a class, etc.

Variable names shall start with a lowercase letter and use underscores ("_") to
separate terms for readability.

This is in accordance to PEP8. Normally, the variable name is all lower case,
not just the first letter.

GP-Py-Name-2

[SUGGESTED]

Meaning of variables

Variables can be named however suits the developer so long as they are not
misleading. Sensible terms or abbreviations, and consistency throughout the
code is expected.

GP-Py-Name-3

[STANDARD]

Constant names. See GP-Py-Const-1

GP-Py-Name-4

[STANDARD]

Function names

Function names shall be all lowercase letter and use underscores ("_") to
separate terms for readability.

This is in accordance to PEP8. (Primitives have a special status and thus a
special naming convention; see GP-Py-Name-25.)

GP-Py-Name-5

[STANDARD]

Class names

Class names shall begin with an uppercase letter and use CamelCaps
convention for additional words.

This is in accordance to PEP8.

GP-Py-Name-6

[STANDARD]

Module names

Modules shall have short, all-lowercase names. Underscores can be used in
the module name if it improves readability.

This is in accordance to PEP8.

GP-Py-Name-7

[STANDARD]

Public method names and instance variables

Public method names and instance variables shall be all lowercase with words
separated by underscores.

This is in accordance to PEP8.

GP-Py-Name-8

[STANDARD]

Private method names and instance variables

Private method names and instance variables shall start with an underscore
and be all lowercase with words separated by underscores.

This is in accordance to PEP8.

GP-Py-Name-9

[STANDARD]

Import alias for numpy

The numpy package shall be imported as np.

import numpy as np

GP-Py-Name-10

[STANDARD]

Import for astropy.io.fits

The astropy fits package shall be imported as follow:
from astropy.io import fits

from astropy.io import fits

GP-Py-Name-11

[STANDARD]

Import alias for matplotlib

The matplotlib.pyplot modules shall be imported as plt.

import matplotlib.pyplot as plt

GP-Py-Name-12

[INTERFACE]

Reserved argument names

The following are reserved argument names:
ad : contains an AstroData object.
adinput : AstroData object serving as input to function
pretty: boolean argument for Descriptors. pretty is a flag that controls

string output, indicating that a human readable string should be returned.
stripID : boolean argument for Descriptors. stripID is a flag that controls

string output, indicating that the component ID should be removed from
the returned value.

GP-Py-Name-13

[STANDARD]

Astrodata add-on package name

The name of the add-on package/directory should end with the string
"_instrument", preceded by a string that uniquely identify the add-on.

This is simply a standard we have adopted. Using the format for new
instruments developed by third-party teams will simplify reviews and the future
integration of the new package into the main gemini_instruments AstroData
configuration package. For example, for OCTOCAM, the package should be
named octocam_instrument.

GP-Py-Name-14

[STANDARD]

Astrodata add-on configuration file name

The configuration file containing the AstroData tags and descriptor definitions is
named adclass.py and is located in <adpkg>_instrument/<instrumentname>/.

This is simply a standard we have adopted. Using that name and structure will
help integration of third-party software (eg. Outsourced DR software) and help
with long-term maintenance.

GP-Py-Name-15

[CRITICAL]

Astrodata tag functions

AstroData tags are defined in the instrument’s AstroData class and must be
decorated with the @astro_data_tag decorator. The name of the function shall
start with “_tag_” followed by an appropriately descriptive string.

The decorator differentiates the tags from the descriptors. The tag functions are
private functions of the class, the name reflects that.
Eg. def _tag_dark():
Note that a tag function can return more than one tag.

GP-Py-Name-16

[CRITICAL]

Astrodata descriptor functions

AstroData descriptors are defined in the instrument’s AstroData class and must
be decorated with the @astro_data_descriptor decorator. The name of the
function is the name of the descriptor. See GP-Py-Name-18 DESCRIPTOR
NAME.

The decorator differentiates the tags from the descriptors. The descriptor
functions are the access to the descriptor values (unlike the tags). The function
name is the descriptor name.

GP-Py-Name-17

[INTERFACE]

Astrodata tag name

An Astrodata tag name shall be written in uppercase, with words or
abbreviations separated with hyphens.

E.g. GMOS, IMAGE, LONGSLIT, IFU-B.

GP-Py-Name-18

[INTERFACE]

Astrodata descriptor name

Descriptor names shall be all lowercase with terms separated with underscores.
Common abbreviations and acronyms can be used when the alternative,
spelling it out, is unreasonably long. Acronyms should be capitalized. The
descriptor name must be instrument agnostic and refer to a particular concept
describing the data.

GP-Py-Name-19

[STANDARD]

RecipeSystem data reduction package name

The name of the importable package containing all the data reduction recipes
and primitives, and their associated data reduction algorithms and look-up
tables should be named <descriptive>dr.

For example, all the production Gemini data reduction code is provided by the
geminidr package, and installed in the PYTHONPATH. When work is
outsourced, the name of or abbreviation for the instrument is preferably used,
eg. octocamdr.

GP-Py-Name-20

[CRITICAL]

Location of add-on recipes

The recipes must be located in <drpkg>/<instrument>/recipes/<mode>, all lower
case within <drpkg>, eg. geminidr/gmos/recipes/sq/. The allowed reduction
modes are Science Quality (sq), Quality Assessment (qa), and QuickLook (ql).

The recipe location is semi-hardcoded for now. The path is defined in the code
as <drpkg>/ad.instrument(generic=True).lower()/recipes/<mode>/ The recipes
within that location will be matched to the data using the tags.

GP-Py-Name-21

[STANDARD]

Recipe module name

The recipe file shall be named recipes_<data_type>.py,
recipes_FLAT_IMAGE.py. The

While there are rules applying to the location of the recipe files, there are no
critical-level rules for the name of the recipe files, they can be named anything.
However, for readability, we have decided to use recipes_<data_type>.py

GP-Py-Name-22

[CRITICAL]

Primitive sets location

Primitive set modules must be located in <drpkg>/<lowercase_instrument>/ ,
eg. geminidr/gmos/

The recipe system mapper will use the name of the instrument to import the
relevant primitive sets and build the one most appropriate to the input AstroData
object.

GP-Py-Name-23

Primitive set file name format

Primitive set files should be name primitives_<primsetid>.py, with <primsetid>

[STANDARD] being a descriptive string related either to the data type or the type of algorithm
it contains. Eg. primitives_gmos_mos.py, primitives_photometry.py

This is simply a standard. There no hardcoded restriction on the file name.

GP-Py-Name-24

[STANDARD]

Primitive parameters definition file name

The parameter definition file name shall be using the format
parameters_<primsetid>.py where <primsetid> must match the string used in
the associated primitive file.

GP-Py-Name-25

[INTERFACE]

Primitive name

Primitives shall be named using camelCaps with an initial lowercase letter.
Common abbreviations and acronyms can be used when the alternative,
spelling it out, is unreasonably long. Acronyms should be capitalized.

GP-Py-Name-26

[INTERFACE]

Recipe name

Recipe functions, located in recipe modules, shall be named using
lowercase_underscore syntax. Common abbreviations and acronyms can be
used when the alternative, spelling it out, is unreasonably long. Acronyms
should be capitalized.

GP-Py-Name-27

[INTERFACE]

Primitive parameter name

Primitive parameter names shall be kept down to a short single word in
lowercase. When multiple words are absolutely necessary, underscores are to
be used.

The developer should try really hard to keep the parameter name to a short
single word before resorting to the underscore, multiword option.

GP-Py-Name-28

[INTERFACE]

Output file name syntax

Each primitive shall be assigned a default suffix to be added to the root
filename when written to disk. The suffix must be representative of the
transformation done by the primitive.

The suffixes used in the Gemini package are defined in PIPE-USER-
102_DatasetNameSuffixes

GP-Py-Name-29

[STANDARD]

Double underscore

Double leading and trailing underscores shall not be used for variable or
function names.

Use only the documented double-underscore names (eg. __init__, __import__,
__file__, etc.). Do not invent your own.

GP-Py-Name-30

[SUGGESTION]

Acronyms in names

Acronyms in function names, including primitives, shall be capitalized.

E.g. ADUToElectrons.

GP-Py-Name-31

The lowercase letter "l"

The lowercase letter "l" shall be avoided as variable name. If absolutely

[SUGGESTION] needed, use "L".

It is too easy to confuse 'el' with and 'i' or a '1', or even a pipe '|'.

GP-Py-Name-32 Reserved EXTNAME

The following EXTNAME are reserved:

 SCI: Science pixel extensions

 VAR: Variance extensions

 DQ: Data quality extensions

 MDF: Mask Definition File extensions (FITS table)

 PHU: Primary Header Unit

 OBJCAT: FITS table of sources detected in the data

 REFCAT: FITS table of sources from catalog that are in or near the field
of view

 OBJMASK: FITS table of sources to be masked.

7.6 Programming – GP-Py-Prog

GP-Py-Prog-1

[STANDARD]

Comparison to None

Comparison to None shall always be done with "is" or "is not", and never
with the equality operators.

Also, beware of writing "if x" when you really mean "if x is not None" – e.g.
when testing whether a variable or argument that defaults to None was set
to some other value. The other value might have a type (such as a
container) that could be false in a boolean context.

GP-Py-Prog-2

[STANDARD]

Class-based Exceptions

Use class-based exceptions. String exceptions shall not be used.

String exceptions have been removed since Python 2.6. In Python 3,
exceptions must subclass BaseException.

GP-Py-Prog-3

[STANDARD]

Raising Exceptions

When raising an exception, use "raise ValueError('message' ".

Do not use the older form "raise ValueError, 'message'".

GP-Py-Prog-4

[STANDARD]

Catching Exceptions

When catching exceptions, use specific exceptions whenever possible
instead of bare except clause.

For example:
try:
 import platform_specific_module
except ImportError:
 platform_specific_module = None

GP-Py-Prog-5

[STANDARD]

String slicing for prefixes and suffixes

The functions ".startwith()" and ".endswith()" shall be used to check for
prefixes and suffixes instead of string slicing.

For example:
 if foo.startswith('bar'):
instead of
 if foo[:3] == 'bar':

GP-Py-Prog-6

[STANDARD]

Object type comparison

Object type comparison shall be done with "isinstance()".

For example:
 if isinstance(obj, int):
instead of
 if type(obj) is type(1):

GP-Py-Prog-7

[STANDARD]

Check for empty sequences

For sequences like strings, lists, tuples, use the fact that empty sequences
are false.

For example:
 if not seq:
instead of
 if len(seq):

7.7 Classes – GP-Py-Class

GP-Py-Class-1

[STANDARD]

Member declaration location

All class members shall be declared in the class scope at the top of the
class.

Specifically, do not declare members only in the __init__ function.

GP-Py-Class-2

[STANDARD]

Order of member declaration

Members shall be ordered in the following order:

1. data members

a. class scope members
b. private members
c. public members

2. function members
a. class members (e.g. classmember decorated)
b. private member functions
c. public member functions

GP-Py-Class-3

[STANDARD]

Mutable members initialized to None

Class members that are intended for mutable types (ie. dictionaries and
lists) should be initialized to None in the class scope and initialized in the
constructor.

Setting the members to None avoids accidental use of a list or dictionary
that is shared among all instances. If this is the desired effect then the
code should be commented.

GP-Py-Class-4 Member initialization

[STANDARD]

Members can be declared to default starting values, but if the real starting
value is set in __init__ then the member should be initialized to None.

7.8 Documentation – GP-Py-Doc

This section specifically applies, and is limited to, documentation associated with code. See also
the Storage section of the Configuration Management Nomenclature document (DPSG-STD-
101_ConfMgmtNomenclature) for a wider perspective.

GP-Py-Doc-1

[INTERFACE]

Use of docstrings

All functions, classes, and modules shall be documented with docstrings.
The docstring format follows the astropy and numpy docstring standard.

http://astropy.readthedocs.org/en/latest/development/docrules.html

GP-Py-Doc-2

[STANDARD]

Use of Sphinx

Documentation, especially user and programmer manuals shall be
produced with Sphinx.

Any other document for which Sphinx is appropriate should indeed make
use of Sphinx. The SRS template, for example, is Sphinx-based.

GP-Py-Doc-3

[STANDARD]

Use of reStructured Text

ReStructured Text appropriate for use with Sphinx shall be used to
document parameters and other special formatting in docstrings, and as a
general format in Sphinx manuals.

GP-Py-Doc-4

[INTERFACE]

Output format for documentation

The output format of the documentation shall be PDF and HTML.

GP-Py-Doc-5

[STANDARD]

Basic documentation requirements

Basic documentation includes:

 in-code comments

 docstrings

 programmer's manual

 user's manual
Basic documentation shall be kept up-to-date.

GP-Py-Doc-6

[STANDARD]

Storage of manuals

Manuals intended for distribution shall be stored with the code base.

While a lot of development documents are stored in our internal
DPSGdocuments repository, the documentation intended to be distributed,
like user or programmer manuals, must be kept with the code such that it
can be included during packaging.

GP-Py-Doc-7 Document sources preservation

http://astropy.readthedocs.org/en/latest/development/docrules.html

[STANDARD]

The document sources, for all documents, shall be checked in the
repository and available to edit.

In other words, it must be possible to edit any document. For example,
PDF only check-ins are not allowed.

GP-Py-Doc-8

[STANDARD]

Use of the team's wiki (internal only)

The team's wiki shall be used for quick documentation, discussions, notes,
and for often-used procedures.
 http://gdpsg.wikis-internal.gemini.edu/index.php/Main_Page

The goal is for information and notes to be shared easily and rapidly. The
wiki can be the initial location for documentation. Anything truly important
though should be formally written and added to configuration
management.

GP-Py-Doc-9

[STANDARD]

Accuracy of comments

Comments shall agree with the code and be up-to-date.

GP-Py-Doc-10

[SUGGESTION]

Comment style

 Comments shall be explanatory, clear, and concise.

 Comments shall be written in English.

 Comments shall not state the obvious.
 [Bad] x = x + 1 # Increment x
 [Good] x = x + 1 # Compensate for border

Don't forget appropriate punctuation on long comments.

GP-Py-Doc-11

[STANDARD]

Inline comments

Inline comments shall be used sparingly. Full line comments are
preferred.

GP-Py-Doc-12

[STANDARD]

docstring delimiters

The """ that ends a multiline docstring shall be on a line by itself and
preceded by a blank line. One line docstrings can have the closing """ on
the same line.

7.9 Tests – GP-Py-Test

This section describes the standards related to testing the Python software suite.

GP-Py-Test-1

Unit tests for public methods

The API must have a thorough set of unit tests associated with it.

http://gdpsg.wikis-internal.gemini.edu/index.php/Main_Page

[STANDARD]

GP-Py-Test-2

[SUGGESTION]

Unit tests for private methods

It is strongly recommended to write unit tests for all private methods

GP-Py-Test-3

[SUGGESTION]

Unit tests for functions

All function should have a unit test suite, especially functions likely to be
called from outside their home module.

GP-Py-Test-4

[STANDARD]

Unit test software

All unit tests use pytest.

GP-Py-Test-5

[STANDARD]

Unit tests location

The unit tests are stored in the subdirectory named “tests” located at the
same level as the module being tested.

GP-Py-Test-6

[STANDARD]

Unit test filenames

The unit test filenames use this format “test_<descriptive_name>”, where
the descriptive name should include the name of the module or class being
tested, as applicable.

GP-Py-Test-7

[STANDARD]

Regression tests for primitives

Each primitive must be tested with all relevant types of inputs using the
Regression Test Framework.

7.10 Astrodata – GP-Py-AD

GP-Py-AD-1

[STANDARD]

Astrodata dependencies

1. Depends on fits, numpy, astropy.
2. Shall not depend on pyraf/iraf
3. Astrodata shall not depend on the Recipe System.

The purpose here is to ensure that people without pyraf/iraf, or without the
need of the automation system (Recipe System) can still make use of the
Astrodata features to manipulate FITS files.

GP-Py-AD-2

[STANDARD]

Lazy loading

Dependencies that are time consuming to load and not always required
should be lazy-loaded.

7.11 Astrodata Tag – GP-Py-ADTag

GP-Py-ADTag-1

[STANDARD]

Use PHU only

The Astrodata tags shall be determined from the Primary Header Unit
only.

This obviously is dependent on the content of the PHU. The intent of this
guideline is to promote improvement of the PHU when a new system is
delivered, such that this guideline can be applied.

GP-Py-ADTag-2

[STANDARD]

Astrodata tags are defined in
<adpkg>_instrument/<instrument>/adclass.py

The Astrodata tags shall be defined in the adclass.py module located in
the instrument subdirectory of the Astrodata add-on package. Eg.
gemini_instrument/gmos/adclass.py

7.12 DRAGONS Add-on – GP-Py-DRadd

GP-Py-DRadd-1

[STANDARD]

Provides Astrodata add-on and RecipeSystem add-on

A DRAGONS add-on package shall provide an Astrodata add-on package
to support the new data, and a RecipeSystem add-on package that will
provide the recipes, the primitives and the data reduction algorithms.

GP-Py-DRadd-2

[STANDARD]

Astrodata add-on basic structure

<adpkgID>_instrument/
 doc/
 <name_of_document>/
 (sphinx files, conf.py, intro.rst, etc)
 <instrument_name>/
 __init__.py|
 adclass.py
 lookups.py
 (any other support file for that instrument)
 tests/
 test_*.py
 __init__.py

Also see: GP-Py-Name-13, GP-Py-Name-14, GP-Py-Test-5, GP-Py-Test-
6, GP-Py-Const-5

GP-Py-DRadd-3

[STANDARD]
[CRITICAL]

RecipeSystem add-on basic structure

<drpkgID>dr/
 doc/
 progmanual/
 (sphinx files, conf.py, intro.rst, etc)
 usermanual/

 (sphinx files, conf.py, intro.rst, etc)
 <instrument_name>/
 lookups/
 BPM/
 __init__.py
 *.fits (bad pixel masks)
 MDF/
 __init__.py
 *.fits (mask definition files)
 __init__.py
 (look-up tables as .py files)
 recipes/
 qa/
 __init__.py
 recipes_*.py
 ql/
 __init__.py
 recipes_*.py
 sq/
 __init__.py
 recipes_*.py
 __init__.py
 tests/
 test_*.py
 __init__.py
 parameters_*.py
 primitives_*.py
 __init__.py

WARNING: Some of that directory structure is a critical requirement.
GP-Py-Name-19, GP-Py-Name-20, GP-Py-Name-22, GP-Py-Test-5, GP-
Py-Test-6, GP-Py-Const-5

7.13 Recipe Set – GP-Py-Recipe

GP-Py-Recipe-1

[CRITICAL]

Recipe module contents

A recipe module shall have

 a top level docstring that explains the general purpose of the
recipe set.

 a variable named recipe_tags holding a set of Astroaata tags valid
for this module.

 A variable named default at the bottom setting the recipe to run if
this module is selected by the Recipe Mapper.

The first bullet is a non-critical standard, the other two are critical.

GP-Py-Recipe-2

[STANDARD]

Recipe contents

A recipe is a function consisting of a list of calls to members of the
selected primitive set. The primitive set is the sole argument of a recipe
function. Flow logic is technically allowed but discouraged to keep the

recipe readable to the scientist.

GP-Py-Recipe-3

[STANDARD]

Recipe completeness

A recipe shall perform a "complete" and "scientifically meaningful"
transformation.

This refers mostly to the notion that a recipe must perform something
sizeable and meaningful to an astronomer.

7.14 Primitives – GP-Py-Prim

GP-Py-Prim-1

[STANDARD]

Use of primitive template

A primitive shall follow the template named PIPE-TEMP-101_Primitive.

The template is available as a .py file in the Templates section of the
DPSGdocuments repository.

GP-Py-Prim-2

[STANDARD]

Primitive names. See GP-Py-Name-25.

GP-Py-Prim-3

[STANDARD]

Primitives use the Gemini logger

A primitive shall use the Gemini logger located in gempy/utils and the log
message utilities in gempy/gemini/gemini_tools.

GP-Py-Prim-4

[STANDARD]

Primitives timestamp the dataset

A primitive shall timestamp the dataset header to indicate that it has been
run on that dataset.

A list of timestamp keywords is available in the geminidr/gemini/lookups/
directory (timestamp_keywords.py). A third-party package might have to
complement that list with an additional lookup table in their add-on
package.

GP-Py-Prim-5

[STANDARD]

Primitives that should not be run twice on a dataset must be able
to tell if they have been run already

A primitive that should not be run twice on a dataset shall check for
timestamp or other indicator and skip the processing, exiting gracefully.

GP-Py-Prim-6

[STANDARD]

Inputs processed one at a time

The inputs shall be processed as AstroData objects, one at a time, in a for-
loop. Of course, if the inputs are to be combined this does not apply.

GP-Py-Prim-7 Primitives use the External Task Interface

[STANDARD]

A primitive calling an external (e.g. an IRAF task, SExtractor) shall use the
External Task Interface (ETI).

GP-Py-Prim-8

[STANDARD]

Primitives ordered alphabetically.

Primitives in a primitive set shall be ordered alphabetically.

7.15 Descriptors – GP-Py-Descrip

GP-Py-Descrip-1

[INTERFACE]

Descriptor return value independent of processing status

A descriptor shall return the correct value, regardless of the data
processing status of the AstroData object.

For example, the value returned for an 'unprepared' dataset should be the
same as for when the data has been 'prepared'.

GP-Py-Descrip-2

[STANDARD]

Descriptors do not add or update keywords

A descriptor shall not add or update entries to the headers of the
AstroData object. A descriptor's value(s) can be written to the HISTORY,
but for information only.

The value of a descriptor should always be obtained from the call to the
descriptor, not by looking for updated values in the headers.

GP-Py-Descrip-3

[INTERFACE]

Descriptor return value

Descriptors applying tp the whole array, and normally derived from
information in the PHU, should always return a single value, while
descriptors representing values specific to the extensions should return a
list of values, even if there is only one value, unless the descriptor was
specifically called on a single extension. If the descriptor function fails to
calculated a value, it shall return None.

Eg. ad.gain() returns a list, even for F2 which has only one extension, but
ad[0].gain() returns a single value because it is called on a specific
extension.

GP-Py-Descrip-4

[STANDARD]

Keyword access in descriptor functions

A descriptor function shall use the phu.get() and hdr.get() AstroData
member functions to access keywords in the header of an AstroData
object.

GP-Py-Descrip-5

[INTERFACE]

No logging in descriptors

A descriptor shall not log any messages.

GP-Py-Descrip-6 Return None upon failure to calculate value

[STANDARD]

A descriptor function shall return None if its value cannot be determined for
whatever reason.

It turns out that bad headers are too frequent to raise errors.

GP-Py-Descrip-7 Descriptor names. See GP-Py-Name-18

GP-Py-Descrip-8

[STANDARD]

Standard descriptor arguments.

Descriptor functions can only accept the pretty and stripID arguments.

7.16 External Modules – GP-Py-Ext

GP-Py-Ext-1

[STANDARD]

IRAF dependency

The gemini data reduction software is allowed to depend on IRAF.
However, for the Python code base, it is strongly discouraged.

If DRAGONS software must depend on IRAF, it should be justified and
discussion with the SUSD members.

GP-Py-Ext-2

[STANDARD]

PyRAF dependency and compatibility

All IRAF scripts shall be PyRAF compatible. The Python code base is
allowed to depend on the pyraf module, however, it is strongly
discouraged.

If DRAGONS software must depend on PyRAF, it should be justified and
discussion with the SUSD members.

GP-Py-Ext-3

[STANDARD]

IRAF external package dependencies

The public package is allowed to depend only the following external
packages:

 fitsutil

 stsdas

 tables

GP-Py-Ext-4

[STANDARD]

Allowed Python dependencies

Gemini data reduction software is allowed to have the packages and
modules included in AstroConda as dependencies.

Any modules from the Python Standard Library is obviously allowed too
(not really dependencies since they come with Python). See
http://docs.python.org/2/library/ for a list.

GP-Py-Ext-5

[STANDARD]

SExtractor dependencies

SExtractor is an allowed dependency.

It is also part of AstroConda.

http://docs.python.org/2/library/

7.17 GUI – GP-Py-GUI

***** TODO *****

GP-Py-GUI-1

[STANDARD]

Tkinter

GP-Py-GUI-2

[STANDARD]

json

GP-Py-GUI-3

[STANDARD]

javascript

GP-Py-GUI-4

[STANDARD]

GP-Py-GUI-5

[STANDARD]

GP-Py-GUI-6

[STANDARD]

GP-Py-GUI-7

GP-Py-GUI-8

8. Guidelines for the gemini_IRAF Codebase

ID

[Priority]

Name

Statement

Note

8.1 IRAF CL Source Code Formatting – GI-CL-Format

GI-CL-Format-1

[STANDARD]

Line Length Rule

Line length shall be kept to 79 characters or less.

GI-CL-Format-2

[STANDARD]

Line Wrapping

Long lines shall be wrapped using the backslash “\”

GI-CL-Format-3

[STANDARD]

Indentation Rule

Indentation shall consist of four (4) spaces. Tabs are NOT allowed.

It is therefore required that code only be edited with an editor that respects
the uses of spaces (ie. does not convert whitespaces to tabs). Example of
editors known to be configurable emacs, vi, PyCharm, and the eclipse IDE.

GI-CL-Format-4

[SUGGESTION]

White Spaces

6) In statements, put one blank after comma "," .
 print (tmpinlist, > todel_list)

7) In statements, operators are flanked on both sides by a blank.
 counter = counter + 1

8) In function argument lists, do not flank equal signs "=" with blanks.
 sections (“@”//outlist, option=”nolist”)

8.2 IRAF CL Constants – GI-CL-Const

GI-CL-Const-1

[STANDARD]

Constant Name

Name constants in ALLCAPS.

This improves readability.

GI-CL-Const-2

[STANDARD]

Respect for constants

Do not change the value of a constant.

GI-CL-Const-3

[STANDARD]

No hardcode

Do not hardcode code statements.

Instead of hardcoding, use constants properly, or use clearly assigned
variables.

GI-CL-Const-4

[STANDARD]

Look-up tables for constant in configuration space

Any values mostly stable but likely to change when changes to the
instrument hardware is made should be stored in a look-up tables. The
look-up tables are normally stored in the data$ directory of the instrument
package.

GP-CL-Const-5

[STANDARD]

Constant definition location

Constants appear at the top of modules, class, or function definitions.

8.3 IRAF CL Naming – GI-CL-Name

GI-CL-Name-1

[STANDARD]

Variable names internal to a script.

Variable names shall start with a lower case letter and use underscores
("_") to separate terms for readability.

GI-CL-Name-2

[SUGGESTED]

Meaning of variables

Variables can be named however suits the developer so long as they are
not misleading. Sensible terms or abbreviations, and consistency
throughout the code is expected.

GI-CL-Name-3

[STANDARD]

Constant names. See GI-CL-Const-1

GI-CL-Name-4

[STANDARD]

Local variables mapping input parameters

Local variables mapping input parameters shall start with l_ followed by
the name of the parameter. Eg. l_rawpath for parameter ‘rawpath’.

GI-CL-Name-5

[STANDARD]

Length of variables

The length of a variable name must be greater than 1 and, the uniqueness
of the variable name must be guaranteed with the first 8 characters.

Exceptions to the greater than one character name are allowed for obvious
counters, eg. ‘i’.
Because the code is translated to Fortran, variables must have a unique
name once converted. Names longer than 8 characters are allowed but
care must be taken to ensure uniqueness post-convertion.

GI-CL-Name-6

[INTERFACE]

Reserved parameter names

The following are reserved argument names:
fl_<something> : The prefix fl_ is reserved for booleans.
inimages : Used for input image lists
outimages : Used for output image lists

outprefix : Used for prefix to use for output filenames when
outimages is not specified.
rawpath : Used for path to raw data
fl_vardq : Control propagation of VAR and DQ planes
logfile : Name of the logfile
verbose : Control verbose mode
status : Exit status of the script

GI-CL-Name-7

[INTERFACE]

Reduction scripts default output filename

The default naming of output files shall be a one-letter prefix and shall be
specified by the parameter “outprefix”.

TODO: List all the prefixes currently in use.

GI-CL-Name-8

[SUGGESTION]

Acronyms in names

Acronyms in function names shall be capitalized.

Note however that IRAF CL does not distinguish between upper case and
lower case, “adu” is the same as “ADU”. This guideline is for code
readability purpose only.

GI-CL-Name-9

[SUGGESTION]

The lowercase letter "l"

The lowercase letter "l" shall be avoided as variable name. If absolutely
needed, use "L".

It is too easy to confuse 'el' with and 'i' or a '1', or even a pipe '|'.

8.4 IRAF CL Programming – GI-CL-Prog

GI-CL-Prog-1

[STANDARD]

Full parameter and task names

Use full parameter and task names in code.

For example, use “verbose” instead of “ver” or “verb”, “delete” instead of
“del”.
While IRAF CL will in many cases be able to do the completion, it might
pick the wrong completion too, or simply crash if it cannot figure it out.

GI-CL-Prog-2

[STANDARD]

Updating Headers

Use gemhedit when making updates to any headers.

GI-CL-Prog-3

[STANDARD]

Calls to other IRAF tasks

Specify all parameters in calls to other IRAF tasks.

This will prevent IRAF from retrieving erroneous cached parameter values
from the uparm.

GI-CL-Prog-4

If statement

One-line “if” statement are not allowed.

[STANDARD]

GI-CL-Prog-5

[STANDARD]

Length of script

Keep the length of the script as short as possible. Create utility scripts if
necessary.

GI-CL-Prog-6

[STANDARD]

Data Tables

Data tables must be FITS binary tables.

The only exception is if sexagesimal format absolutely needs to be used,
then the “.tab” format can be considered.

GI-CL-Prog-7

[STANDARD]

End of line

Each line must end with a “\n” character with no white spaces between it
and the previous character.

In other words, no trailing white spaces, and simple Unix end-of-line
character.

8.5 IRAF CL Documentation – GI-CL-Doc

GI-CL-Doc-1

[STANDARD]

Help pages

Each task must have an IRAF help page.

The help pages are normally stored in the doc$ directory of the instrument
package.

GI-CL-Doc-2

[STANDARD]

Content of help pages

A help page must contain the following sections:

 Header (.help line)

 NAME

 USAGE

 PARAMETERS

 DESCRIPTION

 EXAMPLES

 TIME REQUIREMENTS (optional for non computer intensive
tasks)

 BUGS AND LIMITATIONS

 SEE ALSO

GI-CL-Doc-3

[STANDARD]

Formatting of help page text

IRAF task names are written in uppercase letters. Parameter names in
descriptive text are highlighted (\fIparameter\fR).

GI-CL-Doc-4

[STANDARD]

Basic documentation requirements

Basic documentation includes:

 in-code comments

 help page

 data reduction example script for each mode
Basic documentation shall be kept up-to-date.

GI-CL-Doc-5

[STANDARD]

Storage of manuals

Manuals intended for distribution shall be stored with the code base in the
doc$ directory of the instrument package.

GI-CL-Doc-6

[STANDARD]

Document sources preservation

The document sources, for all documents, shall be checked in the
repository and available to edit.

In other words, it must be possible to edit any document. For example,
PDF only check-ins are not allowed.

GI-CL-Doc-7

[STANDARD]

Use of the team's wiki

The team's wiki shall be used for quick documentation, discussions, notes,
and for often-used procedures.
 http://gdpsg.wikis-internal.gemini.edu/index.php/Main_Page

The goal is for information and notes to be shared easily and rapidly. The
wiki can be the initial location for documentation. Anything truly important
though should be formally written and added to configuration
management.

GI-CL-Doc-8

[STANDARD]

Accuracy of comments

Comments shall agree with the code and be up-to-date.

GP-CL-Doc-9

[SUGGESTION]

Comment style

1) Comments shall be explanatory, clear, and concise.
2) Comments shall be written in English.
3) Comments shall not state the obvious.

 [Bad] x = x + 1 # Increment x
 [Good] x = x + 1 # Compensate for border

Don't forget appropriate punctuation on long comments.

GI-CL-Doc-10

[STANDARD]

Inline comments

Inline comments shall be used sparingly. Full line comments shall be
preferred.

8.6 IRAF CL Tests – GI-CL-Test

GI-CL-Test-1

[STANDARD]

Regression tests for tasks

Each task must be tested with all relevant inputs using the Regression
Test Framework.

8.7 IRAF CL External Dependencies – GI-CL-Ext

GI-CL-Ext-1

[STANDARD]

IRAF external package dependencies

The allowed dependencies on external IRAF packages are:

 stsdas

 tables

 fitsutil

GI-CL-Ext-2

[STANDARD]

IRAF and PyRAF compatibility

All scripts written of the GEMINI IRAF package shall be both IRAF and
PyRAF compatible.

In other words, no Python code can be distributed as part of the GEMINI
IRAF package.

9. Detailed Revision History

v1.0 27 March 2013 Kathleen Labrie

 Initial revision. Based on information written by Craig Allen on the wiki,
with feedback and corrections from Emma Hogan. Added to official
configuration management.

V1.1 16 June 2014 Kathleen Labrie

 Reviewed. Added section on tests. Added IRAF coding standards.

V2.0 25 January 2018 Kathleen Labrie

 Major update to match DRAGONS. Any reference to the old
gemini_python removed.

V2.1 3 October 2018 Kathleen Labrie

 Move the glossary to the top following a suggestion from Bruno Quint. I
also moved the Python requirements ahead of the IRAF ones.

